大学还没开学,报道的新生则被拉去军训了,车上没几个人。他们刷了学生卡,直接找到位置坐下,也不说话,就闭着眼睛继续冥思苦想。
别看两人嘴上都说着要换脑子,实际上经过这么长时间的训练,大家基本上都已经形成条件反射。做不出来的题目,只要时间允许当然得死磕了。
哪有丢在一旁不再管的道理。
宋楠楠盯着自己的手,拼命想让图形在脑海中建立起来。到底需要多少平面才能将这些点都包含起来呢?
她无意识地拨弄自己的手指头,开始吸气再呼气。如果做不出来,那么可不可以算出来呢?
这个模模糊糊的念头一浮现在他脑海中就开始策马奔腾,无法停息。
也许是因为中国选手的代数功底往往深厚到可怕,所以国内的考试对几何的要求不算高,往往不少几何题可以用“算”的方法解出来。不过IMO 赛场上,有难度的的几何题中很多都拦你通过计算法解出来。
为了防止他们抱有一招鲜吃遍天的固有思维,钱老师特别强调过学几何的时候纯几何法一定要掌握。宁可多锻炼短板,不让自己在这上面栽跟头。
大概正是因为形成了这个概念,所以碰到题目的时候,坐在考场里的宋楠楠,根本没有往代数的方面想。
向天估计也一样,当然更大的可能性是向天本来就擅长几何。
这就让他们的思路不约而同地掉入了窠臼,直接忽略掉了代数解法。
宋楠楠立刻翻出了笔记本,在摇晃的公交车厢里,借助昏暗的灯光开始笔走龙蛇。
从二维退化到三维,画两张图就可以猜出来,结果可能是2n。再通过构造法加反证法证明它。那么三维的答案很可能是3n。
对对对,接下来他们要证明的就是一个简单的式子,m=3n。
宋楠楠感觉豁然开朗,抓着笔的手都在发抖。
司机停下了公交车,奇怪地转头问他们:“到终点站了,你们还不下车吗?”
向天猛地从位置上跳了起来,满脸茫然:“啊,都终点站了?”
要命啊,他们坐过了站。
宋楠楠却根本顾不上这个,她扯着嗓子激动地喊:“我有思路了,我们用代数法做这道题。”
司机可不管几何跟代数,直接开口赶人:“下车下车,到终点站了。赶紧的坐那班车回去,两站路就到了。”
结果这回就连向天也不关心公交车的事了,他只迫不及待地追问宋楠楠:“用代数做几何,能算出来吗?”
“可以的。”宋楠楠表情亢奋,“证明这个m=3n,我们可以先形式化,定义f(x,y,z)描述一个符合条件的解(m个平面)的乘积。”
她抓着笔开始在纸上写,结果司机已经关掉了公交车上的灯。瞬间,她就什么都看不到了。
少女咬咬牙:“走,咱们找个地方赶紧写出来。”
灵感这东西傲娇的很,转瞬即逝,要是不捕捉到了的话,说不定后面他们又要开始原地打转转了。